
MSE-487 - Mathematical Methods for Materials Science

1

Week 4&6

Linear algebra 

F. Sorin (MX)

Ecole Polytechnique Fédérale de Lausanne



2

Overview

§ General concept of Matrix analysis as applied to change of Basis problems

§ Review of important linear algebra notions

§ The postulate of Quantum Mechanics and the need for advanced linear 
algebra

§ Advanced Linear algebra: Vector spaces and Hilbert spaces, self-adjoint 
operators, unitary operators, spectral theorem. 

§ Example of applications: 

§ Bloch theorem

§ Brillouin zone
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Towards linear algebra

§ The matrix formalism in vector spaces to change basis and manipulate vectors and 
operators in different basis is very important and useful. 

§ Changing unit cells and using the reciprocal space entails to change coordinates. The 
matrix formalism is a powerful tool to do that. 

𝑎⃗!! =
1
2
𝑏 + 𝑐 	

𝑏!! =
1
2 𝑎⃗ + 𝑐 	

𝑐!! =
1
2 𝑎⃗ + 𝑏

BCC Bravais lattice: ℬ! = 𝑂, 𝑎⃗!, 𝑏!, 𝑐′  FCC Bravais lattice: ℬ!! = 𝑂, 𝑎⃗!!, 𝑏!!, 𝑐′′  

P

C
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§ This plan is indeed by construction a (h’k’l’) crystal plan. And still by construction of the 
reciprocal space, the direction 𝑁! = ℎ′ 𝑎⃗!! + 𝑘!𝑏!! + 𝑙′𝑐!! should be perpendicular to the plan 
P’(h’k’l’), since the reciprocal space of a BCC is the FCC Bravais lattice. 

     In other words, 𝑁! should be perpendicular to the vectors 𝐴!𝐵′ and 𝐴!𝐶′ that generate P’. 

§ To verify this, we can express all vectors in the orthonormal ℬ = 𝑂, 𝑥⃗, 𝑦, 𝑧  and apply the dot 
product in this convenient basis. 

§ The first question is then: 

Is there a matrix that enables to express the coordinates of a vector in the orthonormal basis    
ℬ = 𝑂, 𝑎⃗, 𝑏, 𝑐  from its coordinate in the ℬ! = 𝑂, 𝑎⃗!, 𝑏!, 𝑐′ basis ?    

§ An interesting exercise is to verify that indeed the normal to a 
plan (hkl) is the direction in the reciprocal space [hkl]. 

§ Let’s consider a plan P’(h’k’l’) that intercepts the axis 𝑎⃗!, 𝑏!, 𝑐′

 at points 𝐴! =
1/ℎ′
0
0

, 𝐵! =
0
1/𝑘′
0

 and 𝐶! =
0
0
1/𝑙′

.

𝐴!

𝐵!

𝐶!

P

C

Towards Linear Algebra
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§ In the ℬ! = 𝑂, 𝑎⃗!, 𝑏!, 𝑐′  basis, we have: 𝑎⃗! =
1
0
0

; 𝑏! =
0
1
0

; 𝑐! =
0
0
1

§ We are looking for a matrix 𝑀! =
𝑚"" 𝑚"# 𝑚"$
𝑚#" 𝑚## 𝑚#$
𝑚$" 𝑚$# 𝑚$$

 such that :   𝑀′𝑎⃗%!! = 𝑎⃗%!

Coordinates 
of 𝑎⃗! in ℬ! 

Coordinates 
of 𝑎⃗! in ℬ  

And similarly for 𝑏! 𝑎𝑛𝑑 𝑐!

§ We find that 𝑀! = "
#

−1 1 1
1 −1 1
1 1 −1

and that M’ is reversible. 

§ In the same way we can find a matrix M’’ that transforms the coordinates in ℬ!! = 𝑂, 𝑎⃗!!, 𝑏!!, 𝑐′′
into coordinates in ℬ:

𝑀!! =
1
2

0 1 1
1 0 1
1 1 0

§ From the linearity of matrix operations, we can express the coordinates of the vectors 𝐴!𝐵′ and 
𝐴!𝐶′ in the ℬ basis also by multiplying them by M’. 

§ To prove the orthogonality of P’ and 𝑁!, we finally need to take the dot product of M′𝐴!𝐵′ and 
𝑀′′𝑁!, as well as of M′𝐴!𝐶′ and 𝑀′′𝑁!. 

Towards Linear Algebra
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§ Linear algebra for engineers typically cover: 
o Linear system of equations;
o Matrix formalism, their manipulation, multiplication. 
o Rank of a matrix:
The dimension of the vector space generated by its columns 
(or rows). 
i.e. maximal number of linearly independent columns. 

o Addition and multiplication by a scalar have all the nice 
regular properties: commutativity, associativity… 

o Multiplication: 
For two matrices A (kxp) and B (pxn):

A kxn matrix 

Important concepts in Linear Algebra
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Important concepts in Linear Algebra
§ Matrix multiplication: 

o Associative: A(BC) = (AB)C
o Not commutative!

o Function of matrices: 
In the same way that a function of a variable f(x) can be constructed through its Taylor
series, functions f(M) of a squared matrix M can be defined through the corresponding 
Taylor series. Hence for the exponential: 

o Note that for two matrices (operators) that do not commute, ie 𝐻"𝐻# ≠ 𝐻#𝐻", then the 
exponents also don’t commute. 

o The non-commutativity of the product of matrices, and the facts that some do commute, 
has profound meaning in physics / engineering. 

o Example: 
If we consider the differential equation 

If the matrix, or the operator as we will define later, varies over time: M = M1 until t1, then.  
M = M2, we have: 

The order at which we apply a matrix operator must be respected.
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Important concepts in Linear Algebra
§ Transpose Matrix:

o For 𝐴 = (𝑎&') a kxn matrix, the transpose matrix of A is the nxk matrix: 𝐴( = (𝑎'&).
o For two matrices A and B with the proper size: 

§ A matrix A is symmetric if 𝐴 = 𝐴(	and anti-symmetric if 𝐴 = −𝐴(.	
     Every matrix is the sum of a symmetric and an anti-symmetric matrix. 

§ Trace of square mattrices: 
o The trace of a matrix 𝐴 = (𝑎&') is the sum of the diagonal terms:
o  For two square matrices A and B, and 𝛼 a scalar: 

o The trace is independent of the basis onto which the operator is defined !
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Important concepts in Linear Algebra
§ Inverse Matrix:

o If A is a square matrix (real or complex), B is the inverse of A if        
  AB = BA = I 

I is the identity matrix nxn with diagonal coefficients equal to 1, and off-diagonal 
coefficients equal to 0. 

B is unique ! It is noted 𝐴)". In finite dimensions, it is equivalent to say:

o A is invertible

o The equation Ax = b has a unique solution.

o If A is a square matrix of order n, rank(A) = n.

o The linear application 𝑥 → 𝐴𝑥 is injective
 
o The linear application 𝑥 → 𝐴𝑥 is surjective 
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§ The determinant of a matrix was invented to evaluate if a nxn matrix is of rank n with a 
single number, and not lines / columns operations.

§ For 𝐴 = 𝑎 𝑏
𝑐 𝑑 , 𝑑𝑒𝑡 𝐴 = 𝑎𝑑 − 𝑏𝑐.	If 𝑑𝑒𝑡 𝐴 = 0,	it gives a relation between the two lines that 

indicates if they are linearly dependent

§ Key result: A nxn matrix is inversible if an only if 𝑑𝑒𝑡 𝐴 ≠ 0

§ There are many ways to derive the determinant. A practical one is the Laplace formula: 

Let 𝐴 = (𝑎&') be a square matrix of order n. Let [Aij ] be the submatrix of A obtained by deleting 
row i and column j. The minor-ij Mij and the cofactor-ij Cij are defined by

Important concepts in Linear Algebra

𝑑𝑒𝑡 𝐴 =I
'*"

+

𝑎&'𝐶&'

§ One can also show that for two square matrices: 𝑑𝑒𝑡 𝐴𝐵 = 𝑑𝑒𝑡 𝐴 𝑑𝑒 𝑡 𝐵 = 𝑑𝑒𝑡(𝐵𝐴)

§ This is very important as it ensures that the determinant is independent of the basis, so the 
inversible property is a function of the linear transformation associated to A. 
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§ A vectorial space adds one more opportunity for operations now between elements of different nature. It 
indeed combines elements from different sets (scalars and vectors) where operations are possible within 
each set and across sets. 

If (K,+,.) is a commutative Field, we call K-vector space a set E with an internal law +E, (noted +) and an 
external law from K x E into  E
                         (𝛌,x)            𝛌x
Such that:

- (E,+) is an abelian group;

-

Algebraic structures – Vector Space
oans ce ch. 6, K désigne un corps commutatif. En pratique, K = 1R ou c. 

6.1 Structure d'espace vectoriel 

Définition 1 On appelle K - espace vectoriel tout ensemble E n 
interne notée+, et d'une loi externe K x E E telles que : 

(À,X)~ÀX 

• ( E, +) est un groupe abélien 
el) V(À,µ,)EK2,VxeE, (À+µ,)x=Àx+µ,x 

2) V À E K, V(x,y) E E 2 , À(x +y)= ÀX + Ày 
3) V(À,µ,) E K 2, Vx e E, À(µ,x) = (Àµ,)x 

4) V x E E, lx = x. 

Lorsqu'on ne change pas de corps K, on peut utiliser l'expression espace vect, 
K -espace vectoriel. 
Nous abrègerons K -espace vectoriel en K -ev, espace vectoriel en ev. 
Les éléments d'un K-ev sont appelés vecteurs; les éléments de K sont appel( 

EXEMPLES: 

1) Le corps K est un K -ev, en prenant pour loi interne K x K --+ J 
(X ,y) X 

externe la multiplication dans K : K x K K. Ici, les éléments de K sont 
/ '\ --'\ . ' '\ "' 

§ Examples: 
§ The set of vectors is a ℝ-vector space;
§ Complex numbers can be defined as a ℝ-vector space for usual laws;
§ Polynomial can be built as a vector space, even an algebra

§ An algebra is a K-vector space E with an additional internal law ∗ distributive on +, and that can be 
associative, commutative, and can have an identity. 

     Example: the cross product of two vectors in ℝ3 is an internal law that is not associative.  
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Vector Spaces – basic definitions

§ Let’s consider the general case of ℂ −vector spaces, and an arbitrary nature of the vector 
(vectors ℂ+	,functions, matrices etc... )

§ A subspace of a vector space V is a subset of V that is also a vector space. To verify that a 
subset U of V is a subspace you must check that U contains the vector 0 (neutral for 
addition), and that U is closed under addition and scalar multiplication.

§ A list 𝑣", … , 𝑣+ of vectors in V is a finite number of vectors of length n. 

The span of a list of vectors 𝑣", … , 𝑣+ in V, denoted as span 𝑣", … , 𝑣+ , is the set of all linear 
combinations of these vectors:

span 𝑣", … , 𝑣+ = 𝑢 ∈ 𝑉, ∃ 𝑎", … , 𝑎 ∈ ℂ+, 𝑢 = 𝑎"𝑣" +⋯+ 𝑎+𝑣+

§ A vector space V is said to be finite dimensional if it is spanned by some list of vectors in V:

∃ 𝑣", … , 𝑣+ ∈ 𝑉, ∀𝑢 ∈ 𝑉, ∃ 𝑎", … , 𝑎+ ∈ ℂ+, 𝑢 = 𝑎"𝑣" +⋯+ 𝑎+𝑣+

o If V is not finite dimensional, it is infinite dimensional. In such case, no list of vectors 
from V can span V.

o Example: the space of ℂ-polynomilal is of infinite dimension. 



Polynomials
§ Polynomials are extremely important mathematical objects in all aspects of applied mathematics. They 

are used to extrapolate functions, can be found in the resolution of differential equations, appear in many 
models, etc… 

§ Deriving, integrating, manipulating and finding roots of polynomials is hence important skills to master. 

§  The construction of polynomials is very interesting but a full explanation is beyond the scope of this 
class. Here are the main steps:
§ We can define the set of sequences in ℝ with a finite number of terms that are non-zero. 

Equivalently: 𝐾(ℕ) = (𝑎%) ∈ ℝ, 𝑛 ∈ ℕ, such that ∃𝑁, ∀𝑘 ≥ 𝑁, 𝑎& = 0 .

§ To each polynomial P of degree n in ℝ or ℂ, one can associate a unique sequence in 𝐾(ℕ) such 
that:

  𝑃 𝑧 = ∑&'(% 𝑎&𝑧& 

§ The degree is defined as the greatest integer n for which 𝑎% ≠ 0.

This unicity can be easily demonstrated by induction on the degree of the polymer. 

§ One then defines, on top of the usual addition operation, the multiplication as follow: 
§ 𝐹𝑜𝑟	(𝑎%) & (𝑏%) 	 ∈ 𝐾(ℕ),(𝑐%) = ∑&'(% 𝑎&𝑏%)&

§ One can then show that 𝐾(ℕ) with this internal law, the regular addition law, and the external 
product is an algebra. 

§  If we note 𝑋 ∈ 𝐾(ℕ) with 𝑋 = 0,1,0,0, … 0,… . It is easy to show that 𝑋& = 0,0, …0,1,0, …
§ The algebra can be generated by the basis of the polynomials 𝑋&∈ℕ&

§ In other words, the set of polynomials of degree n is of dimension n+1 and is generated by the 
polynomials 𝑋(+&+%&
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§ A basis of V is a list of vectors in V that both spans V and is linearly independent.

o A list of vectors 𝑣", … , 𝑣+ is said to be linearly independent if the equation:           
𝑎"𝑣" +⋯+ 𝑎+𝑣+ = 0

        has for only solution ∀𝑖, 𝑎&= 0
        ie: one cannot express one vector of the set as linear expression of the others. 

§ A basis of V is a list of vectors in V that both spans V and is linearly independent:

o The dimension of a finite dimensional vector space V is the length of the shortest list 
of vectors that span V.  

o For a finite dimensional vector space, a list of vectors of length dimV is a basis if it is 
linearly independent or if it is a spanning list.

o All basis of a finite dimensional vector space have the same length. 
o Cannot be of smaller length, otherwise dimV would be reduced by 1.

o Cannot be of greater length: in a vector space of dimension n, there cannot 
be a list of linearly independent vector of length n+1 (see Annexe) 

o All list of linearly independent vector of length the dimension of V form a basis for V !

Vector Spaces – Basis
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Vector Spaces – Linear transformations

§ Let U and V be vector spaces over K. A function T : V → U is called a linear transformation 
if, for all u, v ∈ V and α ∈ K:
o T(u + v) = T(u) + T(v)
o T(αu) = αT(u)

§ If the image of T is in V, ie if T : V → V, T is called a linear operator.  

§ Example: Let V denote the space of real polynomials p(x) of a real variable x with real 
coefficients. Here are two linear operators:

o Differentiation: Tp = p’. This operator is linear because (p1 + p2)′ = p1’+ p2’ and         
(ap)′ = ap’.

o Multiplication by x: Sp = xp is also a linear operator.

§ To every linear operator T, one can associate a matrix that acts on the vectors of V (finite
dimension).

o This matrix can be defined by the effect of T on the vectors of a given basis
o So the matrix will depend on the basis chosen !

§ If 𝑣", … , 𝑣+ forms a basis of V, 𝑇𝑣" is a vector in V so it can be written as a linear
combination of the basis vectors: 
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§ Which we can generalize as: 

Which forms the matrix, in the particular basis, of the operator. 

§ The notions discussed on matrices above apply to operators !

o A linear operator T : V → V is said to be injective if Tu = Tv, with u,v ∈ V, implies u = v.

o T is injective if and only if nullT = {0}, with the subspace:  

o The range of T is the subspace image of V under the map T:
o T is surjective if rangeT = V

o In infinite dimension, T is bijective if it is injective and surjective. 

o In finite dimension, T is bijective and has an inverse if it is injective or surjective, just 
like its associated matrix !

o dim(rangeT) = rank(T)

 

Vector Spaces – Linear transformations
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§ Commutativity: the composition of two operators is associated with the product of matrices. 
§ Two operators will commute in terms of their composition, if their associated matrices 

commute with respect to the multiplication of matrices. 

§ The commutator [·,·] of two operators X,Y is defined as [X,Y]≡ XY − YX.
o Two operators X, Y commute if [X,Y] = 0.

From Operators to Matrices

§ The trace and determinant of operators are defined the same way as above, and do not 
depend on the basis chosen for the associated matrix. 

§ Eigen values and eigen vectors of operators: 
o An eigen vector u form a linear operator T is a vector that satisfies 𝑇𝑢 = 𝜆𝑢.
o 𝜆 is called an eigenvalue. 
o For a given eigenvalue 𝜆, there maybe several linearly independent eigen vectors of T. 

We say that 𝜆 generates a sub-space of a given dimension ≥ 1. 
𝑈, = 𝑢 ∈ 𝑉, 𝑇𝑢 = 𝜆𝑢

     The eigenvalue is then said to be degenerate if dim 𝑈,>1. 

o The set of eigenvalues of T is called the spectrum of T.
o Set of eigenvectors of T corresponding to λ = null(T − λI). 
o The eigen values are found solving det(𝑇	 − 	𝜆𝐼) 	= 	0. 
o 𝑃 𝜆 = det 𝑇	 − 	𝜆𝐼  is called the characteristic polynomial of T. 
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§ Theorem: Let T be a linear operator, and assume λ1,...λn are distinct eigenvalues of T and 
u1,...un are corresponding nonzero eigenvectors. Then (u1,...un) are linearly independent.

§ This is true for ℝ 𝑎𝑛𝑑 ℂ vectorial spaces: they can form a basis for the space !!

§ If A is a nxn matrice with n distinct and non zero eigenvalues, it is diagonalizable !

§ A square matrix A is diagonalizable if it is similar to a diagonal matrix, ie there exists an 
invertible matrix of passage P, and a diagonal matrix D, such that 𝐴 = 𝑃𝐷𝑃)"

§ P is the matrix of the eigen vectors of A ! 

§ Equivalently, A is diagonalizable if there exists a basis of its eigen vectors.

§ The associated linear operator T is diagonalizable if there is a basis of the vectorial space V 
formed by the eigenvectors of T.

§ In a more general sense, if the dimension of the sub-spaces of the eigen values of A (nxn) 
add up to n, then it is diagonalizable. 

     So if λ1,...λk are distinct eigen vectors each generating a subspace 𝑈,, = 𝑢 ∈ 𝑉, 𝑇𝑢 = 𝜆&𝑢 , 

     A is diagonalizable if ∑& dim(𝑈,,) = 𝑛

Diagonalizable Matrices
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Diagonalizable Matrices

§ Roots and polynomial algebra: 
§ A polynomial of degree n in ℝ can have a maximum of n roots, and the polynomials 

(𝑋 − 𝛼)-	are irreducible factors, very much like prime numbers for numbers. 
§ In particular, 𝛼 ∈ ℝ is the root of a polynomial P, of order β ∈ ℝ, if there is a polynomial Q 

such that 
𝑃 = (𝑋 − 𝛼)-	Q.	
A polynomial in ℝ is said split, if  ∃𝛼& ∈ ℝ, 𝛽& ∈ ℕ such that 𝑃 𝑋 = ∏&(𝑋 − 𝛼&)-,
If 𝛽& > 1, the root is said degenerate. If deg(P) = n, then 𝑛 = ∑& 𝛽&

§ Fundamental result: every polynomials in ℂ has at least one root.  
§ Corollary: every polynomial in ℂ is split. 
§ Example : factorize P(x) = 𝑥.-1 

§ The characteristic polynomial of a matrix in ℂ can be split. 

§ Algebraic multiplicity: the order of the eigen value as a polynomial root, 𝛽& : 𝑃(𝑋) ∝ (𝑋 − 𝜆&)-,

§ Geometric multiplicity: the dimension of the sub-space generated by 𝜆&: dim(𝑈,,)

§ One can show that 
§ dim(𝑈,,) ≤ 𝛽&
§ A is diagonalizable if and only if ∀𝜆&, dim 𝑈,, = 𝛽&
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§ An inner product on a vector space V over ℝ 𝑜𝑟 ℂ is a map from an ordered pair (𝑢, 𝑣) of 
vectors in V to a number 𝑢 𝑣  in ℝ 𝑜𝑟 ℂ. The axioms for 𝑢 𝑣  are inspired by the axioms for 
the dot product of vectors: 

1. 𝑣 𝑣 ≥ 0, for all vectors 𝑣 ∈ V.

2. 𝑣 𝑣 = 0 if and only if 𝑣 = 0.

3. 𝑢 𝑣" + 𝑣# = 𝑢 𝑣" + 𝑢 𝑣# . Additivity in the second entry.

4. 𝑢 𝛼𝑣 = α 𝑢 𝑣 , 𝛼 ∈ ℂ. Homogeneity in the second entry.

5. 𝑢 𝑣 = 𝑣 𝑢 * . Conjugate exchange symmetry.

So: 𝛼𝑢 𝑣 = 𝑣 𝛼𝑢 ∗ = 𝛼∗ 𝑣 𝑢 ∗= 𝛼∗ 𝑢 𝑣

§ The norm of a vector is also noted: 𝑣 # = 𝑣 𝑣 	≥ 0

§ Here we already take the Dirac notation: 
o ket | ⟩𝑣 	is a vector;
o Bra ⟨ |𝑣  is a linear operator acting on a vector via the dot product. 

§ The complex conjugate is noted with a*.  If we consider a real vector space, the conjugate is 
just the real number unchanged and we find the symmetry of the dot product in ℝ$

Inner Product
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Inner Product

§ Two vectors are orthogonal if 𝑢 𝑣 = 0.	

§ Schwartz inequality: 𝑢 𝑣 ≤ 𝑢 𝑣

§ A list of vectors is said to be orthonormal if all vectors have norm one and are pairwise
orthogonal. 
o Consider a list (e1,...,en) of orthonormal vectors in V. Orthonormality means that:

o We also have:

o So a set of orthonormal vectors are necessarily linearly independant.  

§ An orthonormal basis of V is a list of orthonormal vectors that is also a basis for V. Let 
(e1,...,en) denote an orthonormal basis. Then any vector v can be written as

with

§ This represents the projection of v on a vector ei.
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Linear Algebra as a profound mathematical formalism

§ Matrix analysis is a great tools in Materials Science to handle anisotropic properties of 
materials. 

§ The tensor formalism in continuum and fluid mechanics is also greatly facilitated by a good 
understanding of matrix formalism. 

§ In the 19th and 20th centuries, several physicists had the wonderful intuition to treat analysis 
problems of the wave mechanics with geometry, vectors, and linear algebra approaches. 

§ Notions missing: 
o Hilbert spaces
o Adjunct functions;
o Hermitian and Unitary operators
o Spectral theorem

Paul Dirac 
1902 - 1984

David Hilbert
1862 - 1943

Erwin Schrödinger
1887 - 1961

John Von Neumann
1903 - 1957
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Quantum Mechanics: from waves to vectors
§ In classical mechanics the motion of a particle is usually described using the time-dependent 

position 𝑥(𝑡) as the dynamical variable. 

§ In wave mechanics the dynamical variable is a wave-function. This wavefunction depends 
on position and on time and it is a complex number. 

§ When all three dimensions of space are relevant we write the wavefunction as Ψ 𝑥⃗, 𝑡

§ For one dimensional problems, the Schrödinger equation governs the evolution in space and 
time of the wave function for a non-relativistic particle: 

§ Note that Ψ must be complex otherwise the LHS is complex but the RHS would be real.
 
§ The equation is linear so any linear combination of waves solution of the Schrödinger 

equation is also a solution. 

§ The density probability is defined as:   

§ Note that the Schrödinger equation implies that  

with
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§ A first hint that the formalism of wavefunction could be interpreted as a geometric / linear 
algebra problem, is that the set of complex functions that have the square of their norm 
integrable is a Hilbert vectorial space. 

§ Let’s look at the time independent form of the equation, via a separation of variable: 

§ We recognize here an eigen vector problem where the wave function could be seen as a 
vector, and H an operator (a matrix) that acts on such vector. The matrix has unusual 
coefficients as it could host operations on functions such as derivatives. 

§ A solution ψ associated with an energy E is called an energy eigenstate of energy E. The set 
of all allowed values of E is called the spectrum of the Hamiltonian H. A degeneracy in the 
spectrum occurs when there is more than one solution ψ for a given value of the energy. 

Quantum Mechanics: a linear algebra formalism

we get

or
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Quantum Mechanics: a linear algebra formalism

§ To solve such an equation, we usually don’t impose the normalize requirement to the wave 
function, but only that it is continuous and bounded, and that its derivatives are bounded.

 
§ With discrete energy levels (note that the equation could also lead to a continuum of energy in 

some cases), one obtains a set of eigenvectors 𝜓+(𝑥) with associated energy levels 𝐸+.	

§ A good example is the case of a free particle in a box in one dimension. 

with 𝑉 𝑥 = y
0, − 2

#
≤ 𝑥 ≤ 2

#

+∞, 𝑥 > 2
#
𝑎𝑛𝑑 𝑥 < − 2

#

§ The solutions: 

with

§ Since the Schrödinger equation is linear, all linear combinations of the 𝜓+(𝑥) are also solution 
of the equation for a proper E.   

§ If we define the product of wave function as 𝜓3(𝑥) 𝜓+(𝑥) = ∫)2/#
2/# 𝜓∗3(𝑥) 𝜓+ 𝑥 𝑑𝑥, one can 

show that it is zero except for m = n. 
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§ In other words, we can create a function that will be 
a linear combination of a set of functions that are 
orthonormal for a certain inner product. 

§ This calls for a linear algebra formalism !

Postulates of Quantum Mechanics

§ Quantum Mechanics Postulates (there are various ways to organize them):

Postulate 1: Superposition principle

To each physical system is associated a Hilbert space ℇ𝑯. The state of a system is entirely 
defined at each instant by a normalized vector of the system:

| ⟩𝜓(𝑡) = ∑ 𝑐& | ⟩𝜓&  

where the | ⟩𝜓&  notation is the Dirac “ket” notation representing a vector. 

The | ⟩𝜓& are the state vectors that form an orthonormal basis. 

Note that a state can be shifted by a phase factor without changing the physical meaning. 
However, the phase factor of the coefficients ci cannot be ignored. 
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§ Postulate 2: Operators

For every physical quantity A, we can associate a linear self-adjoint operator ~𝑨 (Hermitian 
operator in finite dimension) that acts on the Hilbert space ℇ𝑯 

§ Postulate 3: Experimental outcome

For a given physical quantity A, whatever the state of the system | ⟩𝜓  right before a 
measurement, the only possible outcome of a measurement are the (real) eigen values of the 
observable ~𝑨.

§ Postulate 4: Projection principle

o The probability to find an eigen value 𝑎6 of an observable ~𝑨 is given by: 

𝑃 𝑎6 = ∑7-*"
+- 𝛼, 𝑟6 𝜓 # 

        Where 𝑛6  is the dimension of the sub-space generated by 𝑎6 , and the | ⟩𝛼, 𝑟6  the   
associated orthonormal eigenvectors. 

o The new state right after the measurement is the projection of | ⟩𝝍  on this sub-space 
generated by 𝒂𝜶. 

Postulates of Quantum Mechanics
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Postulates of Quantum Mechanics
§ Postulate 5: Time evolution

For a state | ⟩𝜓(𝑡)  at time t, as long as the system is not subjected to any type of observation 
(no external intervention / interaction), its evolution over time is governed by the Schrödinger 
equation: 

𝑖ℏ
𝑑| ⟩𝜓(𝑡)
𝑑𝑡

= ~𝐻| ⟩𝜓(𝑡)

Where ~𝐻 is the energy observable, or the Hamiltonian of the system.

§ This postulate is not demonstrated but is a model that is confronted to experiment and that 
has done quite well thus far. 

§ It is hard to develop a physical intuition to this formalism, and to the world of infinitesimally 
small in general. 

§ A solid understanding of the underlying mathematical formalism is however of great help to 
handle quantum mechanics that is essential to understand many properties of materials.

§ Missing notions:  
o Dot product and orthonormal basis for a set of functions;
o Hilbert spaces;
o Self-adjoint (Hermitian) operators;
o Adjunct functions;
o Spectral theorem.
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Advanced Linear Algebra: Hilbert Spaces

§ The postulate of QM stipulated that a system must be defined on a Hilbert Space.

§ A Hilbert space H is a real or complex inner product space that is also a complete metric 
space with respect to the distance function induced by the inner product

§ Inner product space is simply a vectorial space with an inner product. 

§ A complete metric is the property that every Cauchy sequence of H with respect to the 
metric converges in H. 

     This means that there is no “missing point”: for example, ℚ is not complete because you 
can have sequences in ℚ converging towards irrational numbers like 2. 

Example: ℝ-polynomials is not a Hilbert space: 𝑒9 = ∑ 9.

:!

§ The completeness of the Hilbert space used in QM is particularly important for infinite 
dimension spaces. 

     It expends the notion of finite-dimensional Euclidian spaces (which are Hilbert spaces) to 
infinite-dimensional ones. 

If a state | ⟩𝜓 = ∑𝑐& | ⟩𝜓& , the infinite sum must converge in the vectorial space. It is enough that 
the sum of the norms converges (if it converges absolutely, then the series also converges to a 
vector) and this is exactly the Cauchy completeness condition. 
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Advanced Linear Algebra: Projection Operator

§ Consider a subset U of vectors in V (not necessarily a subspace). Then we can define a 
subspace U⊥, called the orthogonal complement of U as the set of all vectors orthogonal to 
the vectors in U:

§ It is a simple yet important notion in QM since after a measurement, the eigen state is 
projected on the subspace generated by the measured eigenvalue of the corresponding 
observable. 

§ If U is a subspace of V, then V = U ⊕ U⊥

§ Given this decomposition any vector v ∈ V can be written uniquely as v = u + w where u ∈ 
U and w ∈ U⊥ . One can define a linear operator PU, called the orthogonal projection of V 
onto U, that acting on v gives the vector u.

§ Since PU is the identity on U, it is easy to show that 𝑃<# = 𝑃< and so it only has 0 or 1 as 
eigenvalues. 

§ Then: 

§ With n = Tr(PU) = dimU = rankPU

§ Every vectorial space of finite dimension, has an orthonormal basis for a given inner 
product. 
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Advanced Linear Algebra: Orthonormal Basis

§ Every vectorial space of finite dimension has an orthonormal basis for a given inner 
product. 
o By definition, a finite dimensional space has a list of vector that spans it. Hence it 

must have a basis. 
o The orthonormal basis can be constructed from an existing arbitrary basis via the 

Gram-Schmidt algorithm. 

From an arbitrary basis of a vectorial space V with dim 𝑉 = 𝑛, and 𝑣", … . , 𝑣+ a basis 
of V, you can built the orthonormal basis 𝑒", … . , 𝑒+  with: 

𝑢" = 𝑣" ; 𝑒" =
𝑢"
𝑢"

𝑢# = 𝑣# − 𝑣#, 𝑢" 𝑢", 𝑒# =
𝑢#
𝑢#

∀𝑘 ≥ 2, 𝑢: = 𝑣: − ∑&*":)" 𝑣:, 𝑢& 𝑢& and 𝑒: =
=.
=.

o The existence of an orthonormal basis can also be shown by induction over the 
dimension of the vectorial space. 
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Advanced Linear Algebra: Orthonormal Basis

§ How about for infinite dimension ?

o You need to use the axiom of choice to prove the existence of a basis for all vectorial 
spaces. 

o Some vector spaces can’t have an inner product, so there is no possibility of a notion 
of orthogonality
o Example: spaces defined on an finite field, or non-ordered field. 

o Every vector space that has a Countable basis, can have an orthonormal basis
o A set is countable if either it is finite or there exists an injective function from it 

into the natural numbers; this means that each element in the set may be 
associated to a unique natural number. 

o The Gram-Schmidt construction can be applied !

o A basis is countable if and only if the space is Separable. 

o A separable space is a space that contains a countable and dense subset. 

o Actually, you can show that every Hilbert space has an orthonormal basis ! The basis 
is not necessarily countable however. 
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Advanced Linear Algebra: Adjoint Operators

§ We consider a linear operator T on a vector space V that has an inner product; 

§ The linear operator T† on V called the adjoint of T, is constructed as follow: for u,v vectors 
of V:  

o T† is a linear operator: 

o For T and S two linear operators:

o The adjoint of the adjoint is the original operator: (S†)† = S 

§ This is a very useful operator and is typically different from T. When the adjoint T† happens 
to be equal to T, the operator is said to be self-adjoint or Hermitian

§ If we apply adjoint formula to vectors of an orthonormal basis, we get:  

or

§ Over an orthonormal basis, the adjoint matrix is the 
transpose and complex conjugate.  
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Advanced Linear Algebra: self-adjoint Operators

§ Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which.    
T = T†.

§ One can show that: 

So

§ One can show that this implies that T = T†.

§ Two other very important results: 
o The eigenvalues of Hermitian operators are real: if

o Different eigenvalues of a Hermitian operator correspond to orthogonal 
eigenfunctions: 

and

with

So we must have: 
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Advanced Linear Algebra: Unitary Operators

§ An operator U in a complex vector space V is said to be a unitary operator if it is surjective 
and does not change the magnitude of the vector it acts upon.

§ The definition is useful even for infinite dimensional spaces. Note that, nullU = 0, and U is 
injective. Since U is also assumed to be surjective, a unitary operator U is always 
invertible.

§ A more common definition:

§ Unitary operators preserve inner products in the following sense: 

§ It is actually an equivalent definition of a unitary operator: 

A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the 
following hold:
o     U is surjective, and
o     U preserves the inner product of the Hilbert space.
 

so
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Advanced Linear Algebra: Spectral Theorem

§ If A is Hermitian on V of finite dimension, then there exists an orthonormal basis of V 
consisting of eigenvectors of A. Each eigenvalue is real. 

§ Most observables in quantum mechanics will be Hermitian operators ! 

§ Two commutative Hermitian operators can be diagonalized on a similar basis of eigen 
vectors. 

§ This also works with another kind of operator: Unitary operator

§ Hence for Hermitian operators, we can have a basis of orthonormal eigen vectors that 
form a basis, with physical, real, eigenvalues. An eigen states can be expressed in this 
basis! 
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Linear Algebra: finite dimension vectorial spaces

§ A vector space V is said to be finite dimensional if it is spanned by a finite list of vectors in V:
o A basis of V is a list of vectors in V that both spans V and is linearly independent:
o The dimension of a finite dimensional vector space V is the length of the shortest list of 

vectors that span V.  
o There cannot be a list of n+1 linearly independent vectors in V (see anexe for proof). 
o Any list of linearly independent vectors of length n = dimV is a basis of V

§ A linear operator in V, and associated matrix, has the following equivalent properties: 
o The columns (lines) of the associated matrix are linearly independent;
o The operator is injective;
o The operator is surjective;
o The matrix in invertible;
o det(𝐴) ≠ 0

§ A matrix A is diagonalizable if it is similar to a diagonal matrix, i.e. there exist an invertible  
matrix P, and a diagonal matrix D, such that 𝑃)"𝐴𝑃 = 𝐷.
o Equivalently, A is diagonalizable if there exist a basis of its eigen vectors. 
o The associated linear operator T is diagonalizable if there is a basis of the vectorial 

space V formed by the eigenvectors of T. 
o A matrix nxn with n distinct and non-zero eigenvalues is diagonalizable. 
o If the dimension of the sub-spaces of the eigen values of A (nxn) add up to n, then it is 

diagonalizable. 
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Advanced Linear Algebra: Adjoint Operators

§ We consider a linear operator T on a vector space V that has an inner product, the linear 
operator T† on V called the adjoint of T, is constructed as follow: for u,v vectors of V:  

§ Spectral theorem (finite dimension):
If A is Hermitian operator on a Hilbert space V of finite dimension, then there exists an 
orthonormal basis of V consisting of eigenvectors of A. Each eigenvalue is real.
 

o This is equivalent to say that A can be diagonalized;

o It is also equivalent to the fact that the sub-spaces of the eigenvalues of V are 
orthogonal, and the sum of their dimension is equal to dimV. 

o The spectral theorem actually applies to Normal operators, defined as operators for 
which 𝑇,T† = 0. This includes self-adjoint and Unitary matrices.

Which also implies that: 

§ Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which T = T†.

§ Important results:: 
o The eigenvalues of Hermitian operators are real.

o Different eigenvalues of a Hermitian operator correspond to orthogonal eigenfunctions. 
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Advanced Linear Algebra: Unitary Operators

§ An operator U in a complex vector space V is said to be a unitary operator if it is surjective 

and does not change the magnitude of the vector it acts upon:

§ The definition is useful even for infinite dimensional spaces. Note that, nullU = 0, and U is 
injective. Since U is also assumed to be surjective, a unitary operator U is always invertible.

§ A more common definition:

§ Unitary operators preserve inner products in the following sense: 

§  Normal operator is one for which 𝑇,T† = 0, 𝑜𝑟 𝑇T†=T†T. It is immediate that Hermitian and  
Unitary operators are also normal. 

 

so

§ Spectral theorem (infinite dimension):
In infinite dimension, the problem is more complex and the theorem holds only in certain 
conditions (that are almost always met in QM). It applies to certain types of operators: 

o Compact self-adjoint operators;
o Bounded self-adjoint operators.

§ Example: the set of square-integrable functions from I in ℝ to ℂ is a Hilbert space often 
defined with the inner product: 𝑓, 𝑔 ∈ 𝐻, 𝑓, 𝑔 = ∫>

2 𝑓 𝑥 𝑔 𝑥 𝑑𝑥. 
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Linear Algebra in Quantum Mechanics
§ Spectral decomposition: in finite dimension, a self-adjoint operator can be diagonalized, 

hence possess a set of orthonormal eigenvectors that form a basis. If 𝑎6  are its 
eigenvalues, that can be degenerate, hence span a sub-space of dimension 𝑛6  and 
eigenvectors ��𝛼, 𝑟6 , one can write:

�𝐴 =I
6

I
7-*"

+-

𝑎6 ��𝛼, 𝑟6 ⟨ |𝛼, 𝑟6

§ This is based on the concept of outer product which is an operator ⟩|𝜓 ⟨ |𝜑 . For an 
orthogonal basis, �𝑃6 = ∑7-*"

+- ��𝛼, 𝑟6 ⟨ |𝛼, 𝑟6  is a projector on the sub-space of 𝑎6. 

§ For an object in state ⟩|𝜓 , the probability to find an eigen value 𝑎6 of an observable ~𝑨 is 
given by: 

𝑃 𝑎6 = ⟨ |𝜓 �𝑃6 ⟩|𝜓 = ∑7-*"
+- 𝛼, 𝑟6 𝜓 # 

where 𝑛6 is the dimension of the sub-space generated by 𝑎6, and the | ⟩𝛼, 𝑟6  the associated 
orthonormal eigenvectors. 

§ Commuting observables:
o If two normal operators commute on a Hilbert space, there exists a basis of common 

eigenvectors. 

o This is quite powerful and is used for example in the quantum numbers of orbitals in 
the Hydrogen atom, or to prove the Bloch theorem. 



Common potentials in QM

§ Free Particle: V = 0
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Bloch Theorem

§ Bloch theorem: 
The solution of the Schrödinger equation in a periodic lattice takes the form of a plane wave 
modulated by a periodic function:  

§ The translational symmetry of the problem reflects on the Hamiltonian: 

§ Noting �𝑇𝒂	the translation operator, one sees immediately that the symmetry of the system 
implies that: ~𝐻,�𝑇𝒂 = 0

 
§ ~𝐻	𝑎𝑛𝑑	�𝑇𝒂 being normal operators, they can be diagonalized over a basis of common 

eigenvectors. 

§ Eigenvalues of �𝑇𝒂  must be of norm 1, so they verify that the probability of finding the 
particle is periodic.  Hence, in 1D,  they are of the form 𝑒&@A with 𝑞 ∈ − B

A
, B
A

. 
§ For 𝜑 𝑥 an eigen function of ~𝐻	𝑎𝑛𝑑	�𝑇𝒂, 𝜑 𝑥 + 𝑎 = 𝑒&@A𝜑 𝑥

§ One can write that 𝜑 𝑥 = 𝑒&@9×𝑒)&@9 𝜑 𝑥 . Calling 𝑓 𝑥 = 𝑒)&@9 𝜑 𝑥 , we see that:
 𝑓 𝑥 + 𝑎 = 𝑒)&@(9DA) 𝜑 𝑥 + 𝑎 = 𝑒)&@9 𝑒)&@A 𝑒&@A𝜑 𝑥 = 𝑒)&@9 𝜑 𝑥 = 𝑓(𝑥)
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Electrons in a Periodic Potential
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Free Electron:

o Tight bending: electrons strongly attached to their atom. 

Wave functions are linear combination of atomic orbital with weak overlap from one site to 
the next.

Bands are formed as the atoms get closer together (ie overlap is increased)

o Nearly free electron model: a perturbation problem

The periodic potential is treated as a small perturbation, the effect of which is 
to split the degenerate energy level at the Brillouin zone edge.  

§ Electrons in a periodic potential can be treated in two well-known approaches: 
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The Brillouin Zone

§ From the Bloch theorem, we know that an electron in 
a periodic potential has a wave function of the form: )()(
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§ For a given k vector, several solutions could be possible, expressed by the label n.

§ If we consider a vector D of the direct lattice, 𝑢:,+ 𝒓 + 𝑫 = 𝑒&𝒌.𝑫 𝑢:,+(𝒓). So the norm is 
unchanged by a translation along the crystal lattice, which is expected. 

§ For a large crystal of size (N1a1, N2a2, N3a3) with (a1,a2, a3) being the primitive lattice 
basis, we can apply the periodic boundary conditions and obtain a quantification of the 
k number: 

𝒌 = ∑&*"$ +,
I,
𝒂𝒊∗ , 𝑛& ∈ ℤ

§ For large N, the k states are very close together and form quasi-continuum of states. 

§ If K is in the reciprocal lattice, for k = k0 + K, we have: 

𝑢:,+ 𝒓 = 𝑒&𝒌.7 𝑓:,+ 𝒓 = 𝑒&𝒌𝟎.𝒓 𝑒&𝑲.𝒓 𝑓:,+ 𝒓 . But the function 𝑒&𝑲.𝒓 𝑓:,+ 𝒓  verifies: 

𝑒&𝑲.(𝒓D𝑫) 𝑓:,+ 𝒓 + 𝑫 = 𝑒&𝑲.𝒓 𝑓:,+ 𝒓  by definition of the reciprocal lattice. 

So 𝑢:,+ 𝒓  and 𝑢:0,+ 𝒓  represents a similar solution with the same energy. 

Quantum states are hence fully defined within an elementary cell of the reciprocal space 
called the Brillouin zone.
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Splitting of energy levels at the Brillouin Zone
§ Before applying a small periodic potential, the electrons are free in the crystal and are 

represented by plane waves:

   𝜓: 𝑟 = "
M 𝑒&𝒌.7	and 
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§ In 1D, the Brillouin zone is − B
A
, B
A

, and the energy level for 𝑘± = ± B
A
	(ℇ> =

ℏ1B1

#3A1
),	is

 degenerated with two states ��+ B
A

 and ��− B
A
.

§ A small periodic potential will create a perturbation that will lift the degeneracy. 

§ Since V is periodic, we can develop it as a Fourier series and to a first approximation, 
consider only the first harmonics:

 𝑉 𝑥 = 	𝜈(𝑒&
123
4 + 𝑒)&

123
4 ) = 2ν×cos(#B9

A
). 

§ This perturbation adds to the Hamiltonian at the first order, with a matrix in the basis of 
the degenerated states:

~𝐻 + �𝑉 = ℇ> 𝜈
𝜈 ℇ>



§ Two new eigenstates emerge: ��𝜓± = "
# ��+ B

A ± ��− B
A  

with energies: 

ℇD = ℇ> + 𝜈  and ℇ) = ℇ> − 𝜈  

The energy level ℇ> is then split, and the region of energy 
ℇ> − 𝜈 < ℇ < ℇ> + 𝜈  has no eigenstate: it is a gap of 
energy for which no stationary solution is found. 

Splitting of energy levels at the Brillouin Zone

Free Electrons Periodic potential

Brillouin 
Zone
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SUMMARY

§ We reviewed matrix manipulation concepts and how they can apply to a change of 
coordinates. 

§ We briefly reviewed wave mechanics concepts and found the linear algebra 
formalism hidden in their expressions

§ We reminded the postulates of Quantum Mechanics

§ We reviewed important linear algebra concepts;

§ We introduced new concepts such as Hilbert space, self-adjoint operators, 
Hermitian and unitary operators

§ We started to apply these notions to the understanding of fundamental concepts in 
the quantum treatment of materials properties
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§ If V is a vector space with dimV=n, there cannot be a list of n+1 linearly 
independent vectors in V. 

§ Proof by induction (from notes of Prof. Isidora Milin @ Harvard University)

Annexe


