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Overview

General concept of Matrix analysis as applied to change of Basis problems

Review of important linear algebra notions

The postulate of Quantum Mechanics and the need for advanced linear
algebra

Advanced Linear algebra: Vector spaces and Hilbert spaces, self-adjoint
operators, unitary operators, spectral theorem.

Example of applications:
= Bloch theorem

= Brillouin zone



Towards linear algebra

The matrix formalism in vector spaces to change basis and manipulate vectors and
operators in different basis is very important and useful.

Changing unit cells and using the reciprocal space entails to change coordinates. The
matrix formalism is a powerful tool to do that.

BCC Bravais lattice: B’ = {0,a’,b’, &'} FCC Bravais lattice: B" = {0,a",b"
1 I
a'=5(-a+b+c) "= (b+¢c)
F'==(a-F+c b = (a+é
= (a ) b = > (a+¢)
¢'==(a+b-c 1 .
2 ( ) 6” = E(C_i + b)



Towards Linear Algebra

C

= An interesting exercise is to verify that indeed the normal to a
plan (hkl) is the direction in the reciprocal space [hKI].

pd |

= Let’s consider a plan P’(h’k’l’) that intercepts the axis a’, b, ¢

1/h' 0 0
at points A’ = ( 0 ) B’ = (1/k’> and C' = ( 0 >
0 0 1/l

= This plan is indeed by construction a (h’k’’) crystal plan. And still by construction of the

reciprocal space, the direction N’ = b’ @” + k'b" + I'¢" should be perpendicular to the plan
P’(h’k’l’), since the reciprocal space of a BCC is the FCC Bravais lattice.

In other words, N’ should be perpendicular to the vectors A’'B’ and A’C’ that generate P’.

= To verify this, we can express all vectors in the orthonormal B = {0, x, v, z} and apply the dot
product in this convenient basis.

= The first question is then:
Is there a matrix that enables to express the coordinates of a vector in the orthonormal basis

B ={0,4d,b, ¢} from its coordinate in the B' = {0, ', b’, '} basis ?
4



Towards Linear Algebra

1 0 0
= Inthe B' = {0,d’,b’, '} basis, we have: a’ = (0); b’ = (1); ¢ = (0)

0 0 1

mi1 Miz My3
= We are looking for a matrix M’ = | m21 Mgz my3 | suchthat: M'ag, = ag
mz; Mz Ma33 Vs >\

Coordinates Coordinates
) ofd' in B’ ofda inB
And similarly for b’ and ¢’

-1 1 1

= We find that M’ = %( 1 -1 1 ) and that M’ is reversible.
1 1 -1

= In the same way we can find a matrix M” that transforms the coordinates in B" = {0, a’ b", E”}

into coordinates in B:
1/0 1 1
M” == E(l 0 1)
1 1 0

= From the linearity of matrix operations, we can express the coordinates of the vectors A'B’ and
A'C' in the B basis also by multiplying them by M’.

= To prove the orthogonality of P’ and N’, we finally need to take the dot product of M'A’B’ and
M"N’, as well as of M'A’C’ and M"'N". 5



Important concepts in Linear Algebra

= Linear algebra for engineers typically cover: A kxn matrix
o Linear system of equations; DR . .
o Matrix formalism, their manipulation, multiplication. a; a;z a;? a;”
o Rank of a matrix: g "
The dimension of the vector space generated by its columns
a;1 a;o - A5 AT
(or rows).
i.e. maximal number of linearly independent columns.
_akl aro J— akj — a/.m_
o Addition and multiplication by a scalar have all the nice
regular properties: commutativity, associativity...
o Multiplication:
For two matrices A (kxp) and B (pxn):
AB — (AB)z]] o e k
g=1::: n
—CL11 a2 s G N alp_ —bll b12 S blj P bln-
a1 @y ... ag ... agp| [bar baa ... [bai| ... bop
- a;q a;o N 0 71 N 77 bll le e blj e bln
_akl a2 e Qpl R akp_ _bp1 bpg Siasiis bpj e bpn_

P
(AB)ij = as1bij + ajebaj + -+ - + agby; + - -+ + azpby; = Z aitbi; 6
I=1




Important concepts in Linear Algebra

= Matrix multiplication:
o Associative: A(BC) = (AB)C
o Not commutative!

o Function of matrices:

In the same way that a function of a variable f(x) can be constructed through its Taylor
series, functions f(M) of a squared matrix M can be defined through the corresponding
Taylor series. Hence for the exponential:

M? — M"
exp(M) =1+M+ —-+ —; —
o Note that for two matrices (operators) that do not commute, ie H;H, # H,H4, then the
exponents also don’t commute.
o The non-commutativity of the product of matrices, and the facts that some do commute,
has profound meaning in physics / engineering.
o Example: 77

If we consider the differential equation —- = M7 = (t) = exp (tM) 7(0)

If the matrix, or the operator as we will define later, varies over time: M = M, until ¢, then.
M = M,, we have:

f(tl —|—t2) = eXp(thg)w(t1> = exp(t21\/[2) exp(thl)x(O) 7é exp(t1M1 +t2M2)£C(O)

The order at which we apply a matrix operator must be respected.



Important concepts in Linear Algebra

Transpose Matrix:
o For A = (a;;) a kxn matrix, the transpose matrix of A is the nxk matrix: AT = (aji).

o For two matrices A and B with the proper size:

(AT)T = A (AB)T = BTAT
(A+B)" =AT+ B (A1As ... A)T = AT .. AT AT
(aA)T = aAT

A matrix A is symmetric if A = AT and anti-symmetric if A = —AT.
Every matrix is the sum of a symmetric and an anti-symmetric matrix.

Trace of square mattrices: n
o The trace of a matrix A = (a;;) is the sum of the diagonal terms: trA = Z s

o For two square matrices A and B, and a a scalar: i=1

tr(A+B)=trA+trB
tr(ad) = atr A;
trA=trA7T;

tr(AB) = tr(BA).

o The trace is independent of the basis onto which the operator is defined !



Important concepts in Linear Algebra

= |nverse Matrix:

o If Ais a square matrix (real or complex), B is the inverse of A if
AB =BA =1

| is the identity matrix nxn with diagonal coefficients equal to 1, and off-diagonal
coefficients equal to 0.

B is unique ! It is noted A~1. In finite dimensions, it is equivalent to say:

o Ais invertible

o The equation Ax = b has a unique solution.

o If Ais a square matrix of order n, rank(A) = n.
o The linear application x — Ax is injective

o The linear application x — Ax is surjective



Important concepts in Linear Algebra

= The determinant of a matrix was invented to evaluate if a nxn matrix is of rank n with a
single number, and not lines / columns operations.

u ForA=(CCl Z

indicates if they are linearly dependent

), det(A) = ad — bc. If det(A) = 0, it gives a relation between the two lines that

=  Key result: A nxn matrix is inversible if an only if det(A) + 0

There are many ways to derive the determinant. A practical one is the Laplace formula:

Let A = (a;;) be a square matrix of order n. Let [A; ] be the submatrix of A obtained by deleting
row i and column j. The minor-ij M; and the cofactor-ij C; are defined by
Mz’j = det[Aij], Cz = (—1)i+jM7;j

n

det(A) = z aijCij

=1
= One can also show that for two square matrices: det(AB) = det(A) de t(B) = det(BA)

= This is very important as it ensures that the determinant is independent of the basis, so the

inversible property is a function of the linear transformation associated to A. 10



Algebraic structures — Vector Space

= A vectorial space adds one more opportunity for operations now between elements of different nature. It
indeed combines elements from different sets (scalars and vectors) where operations are possible within

each set and across sets.

If (K,+,.) is a commutative Field, we call K-vector space a set E with an internal law +¢, (noted +) and an

external law from K x E into E
(A,x) —» Ax

Such that:
- (E,*+) is an abelian group;

- Y(\,p) e KZ¥VxeE, (A u)x =Ax+ px
Vie K,¥(x,y) € E}, Mx+y)=Ax+ Xy
VA, p) € K3, V¥x € E, Mux) = (Ap)x
VxeE, 1x =x.

= Examples:
= The set of vectors is a R-vector space;
= Complex numbers can be defined as a R-vector space for usual laws;
» Polynomial can be built as a vector space, even an algebra

= An algebra is a K-vector space E with an additional internal law = distributive on +, and that can be
associative, commutative, and can have an identity.

Example: the cross product of two vectors in R3 is an internal law that is not associative. 1



Vector Spaces — basic definitions

= Let’s consider the general case of C —vector spaces, and an arbitrary nature of the vector
(vectors C™ ,functions, matrices etc... )

= A subspace of a vector space V is a subset of V that is also a vector space. To verify that a
subset U of V is a subspace you must check that U contains the vector 0 (neutral for

addition), and that U is closed under addition and scalar multiplication.
= Alist (vq, ..., v,) of vectors in V is a finite number of vectors of length n.

The span of a list of vectors (v, ..., v,) in V, denoted as span(vy, ..., v,), is the set of all linear
combinations of these vectors:

span(vy, ...,v) = {u € V,3(ay, ...,a) € C,u = aqvq + --- + ay vy}
= Avector space V is said to be finite dimensional if it is spanned by some list of vectors in V:
3 (vq,...,v,) EV,Vu€eV,3i(ay,...,ay) € Cu=avy + -+ ay,v,

o If Vis not finite dimensional, it is infinite dimensional. In such case, no list of vectors
from V can span V.

o Example: the space of C-polynomilal is of infinite dimension.
12



Polynomials

Polynomials are extremely important mathematical objects in all aspects of applied mathematics. They
are used to extrapolate functions, can be found in the resolution of differential equations, appear in many
models, etc...

Deriving, integrating, manipulating and finding roots of polynomials is hence important skills to master.

The construction of polynomials is very interesting but a full explanation is beyond the scope of this
class. Here are the main steps:
= We can define the set of sequences in R with a finite number of terms that are non-zero.

Equivalently: KN = {(a,)) € R,n € N, such that (3N,Vk > N,a, = 0)}.

= To each polynomial P of degree n in R or C, one can associate a unique sequence in K™ such
that:

P(z) = Yoo az"
» The degree is defined as the greatest integer n for which a,, # 0.

This unicity can be easily demonstrated by induction on the degree of the polymer.

= One then defines, on top of the usual addition operation, the multiplication as follow:
= For (ay) & (bp) € K™, (cn) = =0 Aicbn

= One can then show that K™ with this internal law, the regular addition law, and the external
product is an algebra.

= Ifwe note X € KM with X = {0,1,0,0, ...0, ... }. It is easy to show that X* = {0,0, ...0,1,0, ... }

= The algebra can be generated by the basis of the polynomials XXy

= |n other words, the set of polynomials of degree n is of dimension n+1 and is generated by the
polynomials X%, .,



Vector Spaces — Basis

= Abasis of Vis a list of vectors in V that both spans V and is linearly independent.

O

A list of vectors (v, ..., v,,) is said to be linearly independent if the equation:
avy + -+ apv, =0

has for only solution Vi,a;= 0
ie: one cannot express one vector of the set as linear expression of the others.

= Abasis of Vis a list of vectors in V that both spans V and is linearly independent:

O

The dimension of a finite dimensional vector space V is the length of the shortest list
of vectors that span V.

For a finite dimensional vector space, a list of vectors of length dimV is a basis if it is
linearly independent or if it is a spanning list.

All basis of a finite dimensional vector space have the same length.
o Cannot be of smaller length, otherwise dimV would be reduced by 1.

o Cannot be of greater length: in a vector space of dimension n, there cannot
be a list of linearly independent vector of length n+1 (see Annexe)

All list of linearly independent vector of length the dimension of V form a basis for V!

14



Vector Spaces — Linear transformations

Let U and V be vector spaces over K. A function T : V — U is called a linear transformation
if, forallu, ve Vanda e K:

o T(u+v)=T(u)+T(v)

o T(au)=aT(u)

If the image of TisinV,ieif T:V — 'V, Tis called a linear operator.

Example: Let V denote the space of real polynomials p(x) of a real variable x with real
coefficients. Here are two linear operators:

o Differentiation: Tp = p’. This operator is linear because (p4 + p2)' = p1'+ p2’ and

(ap) = ap’.
o Multiplication by x: Sp = xp is also a linear operator.

To every linear operator T, one can associate a matrix that acts on the vectors of V (finite
dimension).

o This matrix can be defined by the effect of T on the vectors of a given basis
o So the matrix will depend on the basis chosen !

If (vq, ...,vy,) forms a basis of V, Tv, is a vector in V so it can be written as a linear
combination of the basis vectors:

T0s = B D e T BB, b



Vector Spaces — Linear transformations

= Which we can generalize as:

g = O wee (0\
T Iy, To, :
Tv; <— _ . . . . 1| 7-th position

Which forms the matrix, in the particular basis, of the operator.

= The notions discussed on matrices above apply to operators !

©)

©)

A linear operator T : V — V is said to be injective if Tu = Tv, with u,v € V, implies u = v.
T is injective if and only if nullT = {0}, with the subspace: mill T’ = deE Viz To=0}

The range of T is the subspace image of V under the map T: range I' = {Tv; v € V'}
T is surjective if rangeT =V

In infinite dimension, T is bijective if it is injective and surjective.
In finite dimension, T is bijective and has an inverse if it is injective or surjective, just

like its associated matrix !
dim(rangeT) = rank(T) 16



From Operators to Matrices

Commutativity: the composition of two operators is associated with the product of matrices.
Two operators will commute in terms of their composition, if their associated matrices
commute with respect to the multiplication of matrices.

The commutator [-,-] of two operators X,Y is defined as [X,Y]= XY - YX.

©)

Two operators X, Y commute if [X,Y] = 0.

The trace and determinant of operators are defined the same way as above, and do not
depend on the basis chosen for the associated matrix.

Eigen values and eigen vectors of operators:

©)
©)
©)

O O O O

An eigen vector u form a linear operator T is a vector that satisfies Tu = Au.
A is called an eigenvalue.
For a given eigenvalue A, there maybe several linearly independent eigen vectors of T.
We say that 1 generates a sub-space of a given dimension > 1.
Uy={ueV,Tu=u}
The eigenvalue is then said to be degenerate if dim U;>1.

The set of eigenvalues of T is called the spectrum of T.

Set of eigenvectors of T corresponding to A = null(T — Al).

The eigen values are found solving det(T — AI) = 0.

P(A) = det(T — AI) is called the characteristic polynomial of T. 17



Diagonalizable Matrices

Theorem: Let T be a linear operator, and assume Ay,...A, are distinct eigenvalues of T and
us,...U, are corresponding nonzero eigenvectors. Then (uy,...u,) are linearly independent.

This is true for R and C vectorial spaces: they can form a basis for the space !!

If A is a nxn matrice with n distinct and non zero eigenvalues, it is diagonalizable !

A square matrix A is diagonalizable if it is similar to a diagonal matrix, ie there exists an
invertible matrix of passage P, and a diagonal matrix D, such that A = PDP™?!

P is the matrix of the eigen vectors of A!
Equivalently, A is diagonalizable if there exists a basis of its eigen vectors.

The associated linear operator T is diagonalizable if there is a basis of the vectorial space V
formed by the eigenvectors of T.

In a more general sense, if the dimension of the sub-spaces of the eigen values of A (nxn)
add up to n, then it is diagonalizable.
So if Ay,...A¢ are distinct eigen vectors each generating a subspace Uy, = {u € V,Tu = A;u},

Ais diagonalizable if }.; dim(Uy,) = n

18



Diagonalizable Matrices

= Roots and polynomial algebra:

= A polynomial of degree n in R can have a maximum of n roots, and the polynomials
(X — a)” are irreducible factors, very much like prime numbers for numbers.

= |n particular, a € R is the root of a polynomial P, of order 3 € R, if there is a polynomial Q
such that

P=X-a)fQ

A polynomial in R is said split, if 3a; € R, 8; € N such that P(X) = [[;(X — a;)¥:

If B; > 1, the root is said degenerate. If deg(P) = n, then n = ), 5;

= Fundamental result: every polynomials in C has at least one root.
= Corollary: every polynomial in C is split.
= Example : factorize P(x) = x*-1

= The characteristic polynomial of a matrix in C can be split.
= Algebraic multiplicity: the order of the eigen value as a polynomial root, 8; : P(X) < (X — A;)Pi
= Geometric multiplicity: the dimension of the sub-space generated by A;: dim(Uy,)

= One can show that
= dim(Up) <B;

= Ais diagonalizable if and only if V4;, dim(U;Ll.) = B;
19



Inner Product

= An inner product on a vector space V over R or C is a map from an ordered pair (u, v) of
vectors in V to a number (u|v) in R or C. The axioms for (u|v) are inspired by the axioms for
the dot product of vectors:

1. (v|v) =0, for all vectors v € V.

2. (v|lv) = 0ifand only if v = 0.

3. (u|lvy + v,) = (u|vy)+ (u|v,). Additivity in the second entry.

4. (ulav) = a (u|v), a € C. Homogeneity in the second entry.

5. (ulv) = (v|u)* . Conjugate exchange symmetry.

So: (au|v) = (v|au)*x = a*(v|u)*= a*(u|v)

= The norm of a vector is also noted: |v|? = (v|v) >0

= Here we already take the Dirac notation:

o ket |v)is a vector;

o Bra (v| is a linear operator acting on a vector via the dot product.

= The complex conjugate is noted with a*. If we consider a real vector space, the conjugate is

just the real number unchanged and we find the symmetry of the dot product in R3 20



Inner Product

= Two vectors are orthogonal if (u|v) = 0.

= Schwartz inequality: [(u|v)| < |ul|v|

= Alist of vectors is said to be orthonormal if all vectors have norm one and are pairwise
orthogonal.

o Consider alist (eq,...,e,) of orthonormal vectors in V. Orthonormality means that:
(€i,€5) = 04
o We also have: |aje; +... +ape,|* = (a1€1 4 ... + apén, are1 + ... +apey)
= (me1,a1€1) + ... + {anen ,anen)

= la1]* + ... +|an]?.

o So a set of orthonormal vectors are necessarily linearly independant.

= An orthonormal basis of V is a list of orthonormal vectors that is also a basis for V. Let
(e4,...,e,) denote an orthonormal basis. Then any vector v can be written as

B = M\iel % wu: 5 Bafn with <€i,’U> = <€z’>ai€i> = G4

= This represents the projection of v on a vector e,.

21



Linear Algebra as a profound mathematical formalism

= Matrix analysis is a great tools in Materials Science to handle anisotropic properties of
materials.

= The tensor formalism in continuum and fluid mechanics is also greatly facilitated by a good
understanding of matrix formalism.

= In the 19" and 20t centuries, several physicists had the wonderful intuition to treat analysis
problems of the wave mechanics with geometry, vectors, and linear algebra approaches.

David Hilbert rwin Schrbdihger | John Von Neumann Paul Dirac
1862 - 1943 1887 - 1961 1903 - 1957 1902 - 1984

= Notions missing:
o Hilbert spaces
o Adjunct functions;
o Hermitian and Unitary operators 27
o Spectral theorem



Quantum Mechanics: from waves to vectors

= |n classical mechanics the motion of a particle is usually described using the time-dependent
position x(t) as the dynamical variable.

= |n wave mechanics the dynamical variable is a wave-function. This wavefunction depends
on position and on time and it is a complex number.

= When all three dimensions of space are relevant we write the wavefunction as ¥(x, t)

= For one dimensional problems, the Schrodinger equation governs the evolution in space and
time of the wave function for a non-relativistic particle:

OU B &
ih—(2,1) = (—%@ +V(:z:,t)) U(z, )

= Note that ¥ must be complex otherwise the LHS is complex but the RHS would be real.

= The equation is linear so any linear combination of waves solution of the Schrodinger
equation is also a solution.

= The density probability is defined as:

oo

P(z,t) =p(z,t) = U (2, t)V(2,t) = |[T(z,t)]* with / dx |¥(x,t)* = 1

— 00

= Note that the Schrodinger equation implies that %/m dr |¥(z,t)> = 0 23



Quantum Mechanics: a linear algebra formalism

= Afirst hint that the formalism of wavefunction could be interpreted as a geometric / linear
algebra problem, is that the set of complex functions that have the square of their norm
integrable is a Hilbert vectorial space.

= Let’s look at the time independent form of the equation, via a separation of variable:

h? d? |
we get (—%@ﬁLV(I’)) V() = E¢(z)
or Hy(z) = E(z)

= \We recognize here an eigen vector problem where the wave function could be seen as a
vector, and H an operator (a matrix) that acts on such vector. The matrix has unusual
coefficients as it could host operations on functions such as derivatives.

= A solution g associated with an energy E is called an energy eigenstate of energy E. The set

of all allowed values of E is called the spectrum of the Hamiltonian H. A degeneracy in the
spectrum occurs when there is more than one solution g for a given value of the energy.

24



Quantum Mechanics: a linear algebra formalism

To solve such an equation, we usually don’t impose the normalize requirement to the wave
function, but only that it is continuous and bounded, and that its derivatives are bounded.

With discrete energy levels (note that the equation could also lead to a continuum of energy in
some cases), one obtains a set of eigenvectors ,,(x) with associated energy levels E;,

A good example is the case of a free particle in a box in one dimension.

(-2 L V@) b = Bv TR R b
e x)q/}x = EyY(z with V(x) =
2m da? +00,x>§ andx<—§
The solutions:
2 sin(k,z) for n even n?n?h?
Yn(z) = \/Z ( with k. — thil) E, = hw, = :
\/gcos(knm) for n odd. L 2mL

Since the Schrodinger equation is linear, all linear combinations of the ,,(x) are also solution
of the equation for a proper E.
L/2

If we define the product of wave function as (¥, (x) ¥, (x)) = f_L/Zt,b*m(x) Y, (x)dx, one can

show that it is zero except for m = n.
25



Postulates of Quantum Mechanics

= |n other words, we can create a function that will be
a linear combination of a set of functions that are
orthonormal for a certain inner product.

e :

. . . 1h_£ 15(11]1‘” H|y \\
» This calls for a linear algebra formalism ! o §
N & Ry

shutterstock.com - 1453012934

= Quantum Mechanics Postulates (there are various ways to organize them):
Postulate 1: Superposition principle

To each physical system is associated a Hilbert space €. The state of a system is entirely
defined at each instant by a normalized vector of the system:

lY(t)) = X i)
where the |y;) notation is the Dirac “ket” notation representing a vector.
The [y;) are the state vectors that form an orthonormal basis.

Note that a state can be shifted by a phase factor without changing the physical meaning.
However, the phase factor of the coefficients ¢; cannot be ignored. 26



Postulates of Quantum Mechanics

= Postulate 2: Operators

For every physical quantity A, we can associate a linear self-adjoint operator 4 (Hermitian
operator in finite dimension) that acts on the Hilbert space €y

A

= Postulate 3: Experimental outcome

Ay)=(doly)

For a given physical quantity A, whatever the state of the system |y) right before a
measurement, the only possible outcome of a measurement are the (real) eigen values of the
observable 4.

= Postulate 4: Projection principle

o The probability to find an eigen value a, of an observable 4 is given by:

P(ay) = Z:«lgzﬂ(a; T‘a,|l/))|2
Where n, is the dimension of the sub-space generated by a,, and the |a,1y) the
associated orthonormal eigenvectors.

o The new state right after the measurement is the projection of [y) on this sub-space

generated by a,,. -



Postulates of Quantum Mechanics

= Postulate 5: Time evolution

For a state |y(t)) at time t, as long as the system is not subjected to any type of observation
(no external intervention / interaction), its evolution over time is governed by the Schrodinger
equation:

dly(0))
dt

ih = Hy(t))

Where H is the energy observable, or the Hamiltonian of the system.

= This postulate is not demonstrated but is a model that is confronted to experiment and that
has done quite well thus far.

= |tis hard to develop a physical intuition to this formalism, and to the world of infinitesimally
small in general.

= A solid understanding of the underlying mathematical formalism is however of great help to
handle quantum mechanics that is essential to understand many properties of materials.
= Missing notions:

O

©)
©)
©)
©)

Dot product and orthonormal basis for a set of functions;

Hilbert spaces;

Self-adjoint (Hermitian) operators;

Adjunct functions; 73
Spectral theorem.



Advanced Linear Algebra: Hilbert Spaces

= The postulate of QM stipulated that a system must be defined on a Hilbert Space.

= AHilbert space H is a real or complex inner product space that is also a complete metric
space with respect to the distance function induced by the inner product

* |nner product space is simply a vectorial space with an inner product.

= A complete metric is the property that every Cauchy sequence of H with respect to the
metric converges in H.
This means that there is no “missing point”: for example, Q is not complete because you

can have sequences in Q converging towards irrational numbers like V2.

k
Example: R-polynomials is not a Hilbert space: e* = Z%

= The completeness of the Hilbert space used in QM is particularly important for infinite
dimension spaces.
It expends the notion of finite-dimensional Euclidian spaces (which are Hilbert spaces) to

infinite-dimensional ones.

If a state |Y) = ) ¢; [Y;), the infinite sum must converge in the vectorial space. It is enough that
the sum of the norms converges (if it converges absolutely, then the series also converges to a
vector) and this is exactly the Cauchy completeness condition. 29



Advanced Linear Algebra: Projection Operator

Consider a subset U of vectors in V (not necessarily a subspace). Then we can define a
subspace U+, called the orthogonal complement of U as the set of all vectors orthogonal to
the vectors in U:

ULt = {veV|{w,u) =0, forall u c U}

It is a simple yet important notion in QM since after a measurement, the eigen state is
projected on the subspace generated by the measured eigenvalue of the corresponding
observable.

If U is a subspace of V, thenV =U @ U+

Given this decomposition any vector v € V can be written uniquely as v =u + w where u €
U and w € Ut . One can define a linear operator Py, called the orthogonal projection of V
onto U, that acting on v gives the vector u.

Since Py is the identity on U, it is easy to show that PZ = P, and so it only has 0 or 1 as

eigenvalues.

. Py = diag(1,...1,0,....0
Then: U g(\ L )

n entries k entries

With n = Tr(Py) = dimU = rankP

Every vectorial space of finite dimension, has an orthonormal basis for a given inner

product.
30



Advanced Linear Algebra: Orthonormal Basis

= Every vectorial space of finite dimension has an orthonormal basis for a given inner
product.
o By definition, a finite dimensional space has a list of vector that spans it. Hence it
must have a basis.
o The orthonormal basis can be constructed from an existing arbitrary basis via the
Gram-Schmidt algorithm.

From an arbitrary basis of a vectorial space V with dim(V) = n, and (v, ...., v,) a basis
of V, you can built the orthonormal basis (e, ...., e;) with:

Uuq
up=v1 , €=
’ ||y |l
Up
Uy = Uy — (Vg, Up Uy, €2 = llus ||
_ u
vk > Z,Uk =V — Zi-‘zll(vk,ui)ui and e = _||UZ||

o The existence of an orthonormal basis can also be shown by induction over the
dimension of the vectorial space.
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Advanced Linear Algebra: Orthonormal Basis

= How about for infinite dimension ?

o You need to use the axiom of choice to prove the existence of a basis for all vectorial
spaces.

o Some vector spaces can’t have an inner product, so there is no possibility of a notion
of orthogonality

o Example: spaces defined on an finite field, or non-ordered field.

o Every vector space that has a Countable basis, can have an orthonormal basis
o Asetis countable if either it is finite or there exists an injective function from it
into the natural numbers; this means that each element in the set may be
associated to a unique natural number.
o The Gram-Schmidt construction can be applied !

o Abasis is countable if and only if the space is Separable.
o A separable space is a space that contains a countable and dense subset.

o Actually, you can show that every Hilbert space has an orthonormal basis ! The basis
is not necessarily countable however.
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Advanced Linear Algebra: Adjoint Operators

We consider a linear operator T on a vector space V that has an inner product;

The linear operator TTon V called the adjoint of T, is constructed as follow: for u,v vectors
of V:

(u,Tv) = (TTu,v)
o Ttis alinear operator:

o For T and S two linear operators: (ST) = 7157

o The adjoint of the adjoint is the original operator: (ST)T =S

If we apply adjoint formula to vectors of an orthonormal basis, we get:

<TT€Z',6]'> — <ei’Tej> or (TT)ZJ — (Tji>*

(Thewses) = {ei, Tijer)

(T 6 = Tida = Over an orthonormal basis, the adjoint matrix is the
(TT);. = T transpose and complex conjugate.

This is a very useful operator and is typically different from T. When the adjoint TT happens
to be equal to T, the operator is said to be self-adjoint or Hermitian
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Advanced Linear Algebra: self-adjoint Operators

Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which.
T=T".

One can show that: 7 =TT if and only if (v,Tv) € R for allv

(v, Tv) = (TTv,v) = (Tv,v) = (v, Tv)* (v, Tv) = (Tv,v) = (v,TT)
So (v, (T'—=THw)=0

One can show that this implies that T = TT.

Two other very important results:
o The eigenvalues of Hermitian operators are real: 7'v = Av

(v, Tv) = (v, \v) = Xv,v) and (v, Tv) = (Tv,v) = (Av,v) = X* (v,v)

o Different eigenvalues of a Hermitian operator correspond to orthogonal
eigenfunctions:

Tvi = My, Tvy = vy with A1 # Ao
(v9, Tv1) = (v2, \v1) = A1 (ve,v1) (g, Tvy) = (T'vg,v1) = (Aqva, V1) = A2(va, V1)

So we must have: (vi,v2) =0
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Advanced Linear Algebra: Unitary Operators

An operator U in a complex vector space V is said to be a unitary operator if it is surjective
and does not change the magnitude of the vector it acts upon.

|Uu| = |ul, for all u e V
The definition is useful even for infinite dimensional spaces. Note that, nullU = 0, and U is

injective. Since U is also assumed to be surjective, a unitary operator U is always
invertible.

A more common definition: UTU — UUJr —
{Uu,Uu) = (u,u) so (u,UUu)=(u,u) — (u,UU-Iu) =0 forall u
Unitary operators preserve inner products in the following sense:

(U, oy = 4u )

It is actually an equivalent definition of a unitary operator:

A unitary operator is a bounded linear operator U : H — H on a Hilbert space H for which the
following hold:

©)
©)

U is surjective, and
U preserves the inner product of the Hilbert space. 35



Advanced Linear Algebra: Spectral Theorem

= Hence for Hermitian operators, we can have a basis of orthonormal eigen vectors that
form a basis, with physical, real, eigenvalues. An eigen states can be expressed in this

basis!

= |f A is Hermitian on V of finite dimension, then there exists an orthonormal basis of V
consisting of eigenvectors of A. Each eigenvalue is real.

= Most observables in quantum mechanics will be Hermitian operators !

= Two commutative Hermitian operators can be diagonalized on a similar basis of eigen
vectors.

= This also works with another kind of operator: Unitary operator 26



Linear Algebra: finite dimension vectorial spaces

A vector space V is said to be finite dimensional if it is spanned by a finite list of vectors in V:
o Abasis of Vis a list of vectors in V that both spans V and is linearly independent:
o The dimension of a finite dimensional vector space V is the length of the shortest list of
vectors that span V.
o There cannot be a list of n+1 linearly independent vectors in V (see anexe for proof).
o Any list of linearly independent vectors of length n = dimV is a basis of V

A linear operator in V, and associated matrix, has the following equivalent properties:
o The columns (lines) of the associated matrix are linearly independent;

The operator is injective;

The operator is surjective;

The matrix in invertible;

det(A) # 0

O O O O

A matrix A is diagonalizable if it is similar to a diagonal matrix, i.e. there exist an invertible
matrix P, and a diagonal matrix D, such that P"14AP = D.
o Equivalently, A is diagonalizable if there exist a basis of its eigen vectors.
o The associated linear operator T is diagonalizable if there is a basis of the vectorial
space V formed by the eigenvectors of T.
o A matrix nxn with n distinct and non-zero eigenvalues is diagonalizable.
o If the dimension of the sub-spaces of the eigen values of A (nxn) add up to n, then it is
diagonalizable.



Advanced Linear Algebra: Adjoint Operators

= \We consider a linear operator T on a vector space V that has an inner product, the linear
operator Tton V called the adjoint of T, is constructed as follow: for u,v vectors of V:

(o, T = (T]Lu , V) Which also implies that: (Thi; = (Ty)*

= Self-adjoint (or Hermitian in finite dimension) operators are linear operators T for which T = TT.

» [mportant results::
o The eigenvalues of Hermitian operators are real.

o Different eigenvalues of a Hermitian operator correspond to orthogonal eigenfunctions.

= Spectral theorem (finite dimension):
If A is Hermitian operator on a Hilbert space V of finite dimension, then there exists an

orthonormal basis of V consisting of eigenvectors of A. Each eigenvalue is real.
o This is equivalent to say that A can be diagonalized;

o It is also equivalent to the fact that the sub-spaces of the eigenvalues of V are
orthogonal, and the sum of their dimension is equal to dimV.

o The spectral theorem actually applies to Normal operators, defined as operators for

which [T, TT] = 0. This includes self-adjoint and Unitary matrices. 38



Advanced Linear Algebra: Unitary Operators

= Spectral theorem (infinite dimension):
In infinite dimension, the problem is more complex and the theorem holds only in certain
conditions (that are almost always met in QM). It applies to certain types of operators:

o Compact self-adjoint operators;

o Bounded self-adjoint operators.

= Example: the set of square-integrable functions from | in R to C is a Hilbert space often
defined with the inner product: f,g € H,{(f,g) = [, f()g(x)dx.

= An operator U in a complex vector space V is said to be a unitary operator if it is surjective

and does not change the magnitude of the vector it acts upon: |Uu| = |u|, for all u € V

= The definition is useful even for infinite dimensional spaces. Note that, nullU = 0, and U is
injective. Since U is also assumed to be surjective, a unitary operator U is always invertible.

= A more common definition: UTU = UUT = T
(Uu,Uu) = (u,u) so (u,UUu)=(uwu) — (u,  UU-Iu) =0 forall u
= Unitary operators preserve inner products in the following sense: ( Uu ' UU) = (u " ’U>

= Normal operator is one for which [T, T] = 0, or T7'=T'T. It is immediate that Hermitian and

Unitary operators are also normal.
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Linear Algebra in Quantum Mechanics

= Spectral decomposition: in finite dimension, a self-adjoint operator can be diagonalized,
hence possess a set of orthonormal eigenvectors that form a basis. If a, are its
eigenvalues, that can be degenerate, hence span a sub-space of dimension n, and
eigenvectors |a, 7, ), one can write:

Ng
A= Z z agla, T e, 7y |

a rg=1

= This is based on the concept of outer product which is an operator |y) (¢|. For an
orthogonal basis, P, = Zfof‘=1|a, ra)(a, 1, | is a projector on the sub-space of a,,.
= For an object in state [y), the probability to find an eigen value a, of an observable 4 is
given by:
P(ag) = (Y|P |Y) = Z?;;ﬂ(a; T‘all/J)lz

where n, is the dimension of the sub-space generated by a,, and the |a,r,) the associated
orthonormal eigenvectors.

= Commuting observables:
o If two normal operators commute on a Hilbert space, there exists a basis of common
eigenvectors.

o This is quite powerful and is used for example in the quantum numbers of orbitals in

the Hydrogen atom, or to prove the Bloch theorem. 40



Common potentials in QM

2
= Free Particle: V=0 ]:] = —h—V +V(7)
2m
V) _ 1 —z(E.F—wz) - _ hl; E=# — 1
(7" t) V1/2 P = , L =Nnaw p(l")— ;
= Quantum well: quantization of energy states
\%
I I , ,
Infinite well: E = W ((n+l)z
" 2m L
X
= |n a crystal solid: Periodic Potential: V(r+R) = V(r) V(r)
. : _ =~ ik .F Ions ‘
Bloch Theorem: 14, = fk,n (r)e

fkn(F+R):fkn(;) \/ \f \V \r \7 |



Bloch Theorem

= Bloch theorem:
The solution of the Schrodinger equation in a periodic lattice takes the form of a plane wave
modulated by a periodic function: o iR

uk,n — fk,n (7")8

SinF+R)= [, ,(F)

= The translational symmetry of the problem reflects on the Hamiltonian:

A ht o~ ~
H=——V>+ V(r) WithV(#+ad) = V() for every vector d of the direct lattice.
2m

= Noting T, the translation operator, one sees immediately that the symmetry of the system
implies that:[H,T,] = 0

= HandT, being normal operators, they can be diagonalized over a basis of common
eigenvectors.

= Eigenvalues of T, must be of norm 1, so they verify that the probability of finding the

particle is periodic. Hence, in 1D, they are of the form €72 with g € —gg]

= For ¢(x) an eigen function of H and T, ¢(x + a) = e"9%p(x)

= One can write that ¢ (x) = eldX x g ~1qx ¢(x). Calling f(x) = e lax ¢ (x), we see that:
fx+a) =e XD p(x + a) = e71¥ 7% el%(x) = 71" p(x) = f(x)
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Electrons in a Periodic Potential

= Electrons in a periodic potential can be treated in two well-known approaches:

o Tight bending: electrons strongly attached to their atom.

Wave functions are linear combination of atomic orbital with weak overlap from one site to
the next.

Bands are formed as the atoms get closer together (ie overlap is increased)

o Nearly free electron model: a perturbation problem

The periodic potential is treated as a small perturbation, the effect of which is
to split the degenerate energy level at the Brillouin zone edge.

E ' 2 E
N Free Electron: |
- hk?
E(k)=
2m

v

v

—r/q wla
-/
k i wla k



The Brillouin Zone

. -\ _ik.F
= From the Bloch theorem, we know that an electron in Uy, = fk,n (r)e
a periodic potential has a wave function of the form: -~ = -
P g fk,n(r—i_R):fk,n(r)

= For a given k vector, several solutions could be possible, expressed by the label n.

= If we consider a vector D of the direct lattice, u ,(r + D) = e®*P u; . (). So the norm is
unchanged by a translation along the crystal lattice, which is expected.

= For a large crystal of size (N1a4, Noa,, Nsa3) with (a4,a,, az) being the primitive lattice
basis, we can apply the periodic boundary conditions and obtain a quantification of the
k number:

For large N, the k states are very close together and form quasi-continuum of states.

If K is in the reciprocal lattice, for k = ky + K, we have:

U n (1) = T fi (1) = etkoT KT £ (). But the function e f;, ., (r) verifies:
elKT+D) £ (r + D) = ™7 £ ,(r) by definition of the reciprocal lattice.

S0 uy,(r) and u, » (1) represents a similar solution with the same energy.

Quantum states are hence fully defined within an elementary cell of the reciprocal space
called the Brillouin zone.
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Splitting of energy levels at the Brillouin Zone

degenerated with two states ‘+ g> and

Before applying a small periodic potential, the electrons are free in the crystal and are
represented by plane waves:

1 ik g h2k2
Yr(r) ==e™and E(k)=——
k Va ( ) m
In 1D, the Brillouin zone is ]—gg] and the energy level for k, = i% (€ = :;7222) is

-3

A small periodic potential will create a perturbation that will lift the degeneracy.

Since V is periodic, we can develop it as a Fourier series and to a first approximation,
consider only the first harmonics:

,2TTX L2TTX

V(x) = v(e'a +e " a) = 2vxcos(Z2).
a

This perturbation adds to the Hamiltonian at the first order, with a matrix in the basis of
the degenerated states:

H+I7=<€° v)
v 80
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Splitting of energy levels at the

Brillouin Zone

a

-2

= Two new eigenstates emerge: |1,lu_r> = \/%( + E> T+
with energies:

L = €0+ |V| and €_ = 80— |V|

The energy level €, is then split, and the region of energy
Eo—lv|<E<Ey+|v] has no eigenstate: it is a gap of
energy for which no stationary solution is found.

s E(k) A E(k)
Brillouin i
Zone :

[2|V3|
IZ|V2|
T2l vy
> —>
- 0 T ka ka

Free Electrons Periodic potential

Vix)A

N7 N7 S :
=S

Vi(x)
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SUMMARY

We reviewed matrix manipulation concepts and how they can apply to a change of
coordinates.

We briefly reviewed wave mechanics concepts and found the linear algebra
formalism hidden in their expressions

We reminded the postulates of Quantum Mechanics
We reviewed important linear algebra concepts;

We introduced new concepts such as Hilbert space, self-adjoint operators,
Hermitian and unitary operators

We started to apply these notions to the understanding of fundamental concepts in
the quantum treatment of materials properties
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Annexe

= |f Vis a vector space with dimV=n, there cannot be a list of n+1 linearly

independent vectors in V.

» Proof by induction (from notes of Prof. Isidora Milin @ Harvard University)

Base Case. When n = 1, let {v} be a basis for V, and v;,v2 € V be any

two vectors in V. Then, Hal,ag € F such that v1 = a1v and vy = agqu. If

aiaz = 0, then either v; = 0 or vy = 0 which, in both cases, makes {v1,1)2}

into a linearly dependent set. Otherwise, we can write ivl — iv2 =0, so

that {v1, v} is again linearly dependent.

Inductive Step. Suppose that in any n—1-dimensional vector space any
n vectors are linearly dependent. We want to show this implies that any

n + 1 vectors vy, v, ...,
dependant.

Let e1,...,e, be a basis for V. Then, all vectors in V are expressible as
linear combinations of the e;’s, so we can find scalars a; j, where 1 <4 < n+1,
1 < j < n such that:

vp, in any n-dimensional vector space V are linearly

v = al’lel + 0,1’262 + ...+ al’nen

v2 = ag1€e1 +ag26e2 + ...+ azpeén

Un = Qp,1€1 +an2€e2 + ...+ Gppén
Un+1 = Qp+1,1€1 + Ant1,2€2 + ... + Gpt1nén

Now, consider the scalars ”in the first column” i.e. a1,1,02,1,...,0n,1,n+1,1.
If all of them are 0, then we have that v1,va, ..., Un, Unt1 € V' = span(ez, . .. e,).
Now, dim(V') = n —1 and v1,...v, € V/, so by the inductive hypothesis,
V1 ...V are linearly dependent, which implies v1,...,Un,Un+1 are linearly
dependent as well.

So we now assume that 3a;; # 0. WLOG (i.e. by reordering the v;’s),
assume a;,1 # 0. Now consider the following n vectors:

a2,1

/ ) / /

Vg = V2 — a—vl =ag9€2t ...+ 0 pen
an,1

/ n, ’

U, = Up — ——V1 —an262—|— .ta,,en

a1,1 ’
An+1,1

& ! !
Up41 = Unt1 — v = an+1’262 +...+ an_l_l,nen

Note that vy, ..., v}, v;, . are n vectors in the n—1-dimensional vector space
V' = span(es,. .., e,), so that by the inductive hypothesis, they are linearly
dependent. That is, I\a, ..., Ap41 € F, not all zero, such that

A2vh + ..+ AUy, 4 An g1y = 0

This implies that:

a2,1 an,1 Ant1,1 =
A2(ve — Evl) + .o+ (v, — aLvl) + Ant1(vny1 — Lvl) =0

) ) )

and we finnally get:

a a a -
_()\2% 4., '+>\"_an,1 +Ant1 ZH’I Y1+ Av2+ ...+ ApUn + At 1Uny1 =0

) 3 )

Thus, v1,v2,. .., Un, Unt+1 are linearly dependent, which ends the proof of the
inductive step. O
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